

Exercise 1: Write down in full the following expressions ($(i, j, k = 1, 2, 3)$).

(i) σ_{ii} , (ii) $A_{ij} B_{ij}$, (iii) $\sigma_{ij} = \lambda \varepsilon_{kk} \delta_{ij} + 2 \mu \varepsilon_{ij}$, (iv) $\frac{\partial^2 F}{\partial x_i \partial x_i}$, (v) $\frac{\partial \sigma_{ij}}{\partial x_j} + b_i = 0$.

Exercise 2: Evaluate the following expressions when ($i, j, k = 1, 2, 3$)

(i) δ_{ii} , (ii) $\delta_{ij} \delta_{ij}$, (iii) $\delta_{ij} A_{ik}$.

Exercise 3: Show that $(P_{ijk} + P_{jik} + P_{ikj}) x_i x_j x_k = 3 P_{ijk} x_i x_j x_k$.

Exercise 4: For a solid of volume V and surface area $\partial\Omega$, use the divergence theorem to show,

$$\int_{\partial\Omega} x_i n_j dS = \delta_{ij} V.$$

Exercise 5: For the vector, $\mathbf{b} = \nabla \times \mathbf{u}$ show that,

$$\int_{\partial\Omega} \lambda b_i n_i dS = \int_{\Omega} \lambda_i b_i dV \text{ where } \lambda(x_i) \text{ is a scalar function of space variables.}$$

Exercise 6: Show the following identities,

(a) $\mathbf{u} \cdot \mathbf{L}^T \mathbf{v} = \mathbf{L} \mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{L} \mathbf{u}$
 (b) $(\mathbf{u} \otimes \mathbf{v})(\mathbf{a} \otimes \mathbf{b}) = (\mathbf{v} \cdot \mathbf{a}) \mathbf{u} \otimes \mathbf{b} = \mathbf{u} \otimes \mathbf{b} (\mathbf{v} \cdot \mathbf{a})$

Exercise 7: If the tensor \mathbf{A} is symmetric show that $A_{ij} L_{ij} = A_{ij} L_{ij}^s$, where L_{ij}^s are the components of the the symmetric tensor \mathbf{L}^s of \mathbf{L} .

Exercise 8: Show that the quadratic form,

$$\mathbf{x} \cdot \mathbf{L} \mathbf{x} = L_{ij} x_i x_j$$

remains unchanged if \mathbf{L} is replaced by its symmetric part \mathbf{L}^s .

Exercise 9: For the following quadratic form,

$$S = A_{ij} x_i x_j \quad (i, j = 1, 2, 3)$$

where A_{ij} are constants, show that,

$$\frac{\partial S}{\partial x_i} = (A_{ij} + A_{ji}) x_j, \quad \frac{\partial^2 S}{\partial x_i \partial x_j} = A_{ij} + A_{ji}$$

Simplify when $A_{ij} = A_{ji}$